FECHA: Julio 2017

TITULO:

ESTUDIO DE IMPACTO AMBIENTAL POR INSTALACIÓN DE COGENERACIÓN CON MOTOR DE BIOGÁS DE 330 kWe EN GESTREVIN
<table>
<thead>
<tr>
<th>Nº REV.</th>
<th>FECHA</th>
<th>APARTADOS AFECTADOS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>10/07/2017</td>
<td>Todos</td>
<td>NSR: Emisión inicial</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN

1.1 Antecedentes

1.2 Objeto del estudio

1.3 Titular del proyecto

1.4 Normativa aplicable

DESCRIPCIÓN DE LA ACTUACIÓN Y SUS ACCIONES DERIVADAS

2.1 Localización

2.2 Descripción de la actuación

2.2.1 Descripción de la digestión anaerobia derivada del tratamiento de agua

2.2.2 Necesidades térmicas y producción de biogás

2.2.3 Descripción del proceso de cogeneración

2.3 Descripción de los equipos susceptibles de producir impacto

2.3.1 Motor de combustión de biogás

2.4 Sistema de tratamiento de biogás

EMISIONES CONTAMINANTES

3.1 Instalación de cogeneración

3.1.1 Emisiones sólidas

3.1.2 Emisiones líquidas

3.1.3 Emisiones atmosféricas

3.1.4 Contaminación acústica

3.1.5 Vibraciones

3.2 otros aspectos ambientales a considerar

3.2.1 Relativo al Plan de Acción Territorial de Riesgo de Inundación de la Comunidad Valenciana (PATRICOVA)

3.2.2 Relativo a la red de vigilancia ambiental

DESCRIPCIÓN DE ALTERNATIVAS

4.1 Centrales hidráulicas de agua fluyente

4.2 Centrales térmicas nucleares

4.3 Centrales térmicas convencionales

4.4 Centrales hidráulicas

4.5 Centrales de cogeneración

4.6 Parques eólicos

4.7 Selección de la alternativa

INVENTARIO AMBIENTAL

5.1 Descripción del medio receptor

5.2 Medio ambiente natural

5.2.1 Topografía del entorno

5.2.2 Micrometeorología del emplazamiento

5.2.3 La biosfera
5.3 El medio ambiente social ... 27
 5.3.1 Demografía .. 27
 5.3.2 Usos del suelo ... 28
 5.3.3 Patrimonio .. 28
 5.4 Interacciones ecológicas .. 28

6 IDENTIFICACIÓN Y VALORACIÓN DE IMPACTOS 29
 6.1 Instalación de cogeneración ... 29
 6.1.1 Residuos sólidos ... 29
 6.1.2 Residuos líquidos ... 29
 6.1.3 Emisiones gaseosas ... 29
 6.1.4 Contaminación acústica ... 30
 6.1.5 Vibraciones .. 30

7 MEDIDAS PROTECTORAS Y CORRECTORAS 32
 7.1 Instalación de cogeneración ... 32
 7.1.1 Recogida de aceite .. 32
 7.1.2 Emisiones gaseosas ... 32
 7.1.3 Reducción de ruidos ... 34
 7.1.4 Reducción de vibraciones ... 35

8 PROGRAMA DE VIGILANCIA AMBIENTAL 36

9 CONCLUSIÓN .. 37

10 PLANOS ... 39
1 INTRODUCCIÓN

1.1 Antecedentes

Con el objetivo de conseguir una optimización energética de los procesos de gestión de residuos vínicos en la empresa GESTREVIN, ubicada en Utiel (Valencia), el promotor ha propuesto la instalación de una planta de cogeneración con motor de biogás. El objetivo es aprovechar el biogás generado como producto final que se obtiene en la depuradora de agua, que es un combustible que, quemándose en un motogenerador permitirá, por una parte generar energía eléctrica para abastecimiento de la fábrica, y por otra parte recuperar el calor contenido en parte de los circuitos del motor y en los gases de escape del mismo para las necesidades térmicas del propio proceso de depuración, para acondicionamiento del digestor.

La empresa actualmente está conectada con la red eléctrica de la compañía distribuidora de la zona, desde donde abastece la totalidad de sus consumos. La posibilidad de autogenerar parte o la totalidad de los propios autoconsumos a partir del aprovechamiento energético del motor de biogás aplicando la tecnología de cogenegación, conlleva una mayor optimización de las instalaciones y los procesos, a la vez que reduce la cuenta de explotación de la empresa por aprovechamiento energético. Con objeto de conseguir estos propósitos se ha convenido que la solución óptima reside en la instalación de un sistema de cogenegación que permita, consumiendo combustible en este caso biogás, satisfacer parte de las demandas térmicas, a la vez que generar energía eléctrica que permita abastecer a la propia fábrica, con la posibilidad de exportar excedentes a la red si la energía generada es superior a las necesidades eléctricas en las propias instalaciones.

Se tiene previsto la instalación de un motor JENBACHER JMS-208 GS-C25 de 330 kWe y se recuperará el calor contenido en los gases de escape y en el circuito de alta temperatura, para generar agua caliente que se utilizará para calentamiento de los fangos en el digestor donde se genera el biogás.

1.2 Objeto del estudio

El presente documento es el Estudio de Impacto Ambiental relativo al proyecto de instalación de una planta de cogenegación consistente en 1 motogenerador de biogás de 330 kWe, asociada al propio proceso de gestión de residuos que se realiza en GESTREVIN, en terrenos del término municipal de Utiel (Valencia).

Será necesario identificar los posibles focos contaminantes con respecto al entorno que ocupará la instalación y adoptar las medidas preventivas necesarias que permitan asegurar el cumplimiento de la normativa vigente en el aspecto medioambiental.

En este documento se analizan las distintas emisiones que podría generar el conjunto de la actividad (sólidas, líquidas, gaseosas, sonoras), demostrándose que, o en realidad no se producen, o por sí solas no tienen ninguna repercusión perniciosa sobre la sanidad ambiental o, en último caso, que
se toman las medidas correctoras y preventivas necesarias para asegurar y garantizar que no exista tal repercusión.

1.3 Titular del proyecto

Empresa: GESTORA DE RESIDUOS VÍNICOS S.C.V. (GESTREVIN)
C.I.F.: F-97206635
Representante: Eloy Manuel Torrico Marín
Dirección: Polígono Industrial Nuevo Tollo, parcela M-101, 46.300 Utiel (Valencia)

El emplazamiento de la instalación es:
GESTREVIN
Polígono Industrial Nuevo Tollo, parcela M-101
46.300 Utiel (Valencia)

1.4 Normativa aplicable

Este proyecto se acoge en cuanto a legislación se refiere, a la siguiente normativa en materia medioambiental:

Evaluación de impacto ambiental

- RD Legislativo 1302/1986, de evaluación de impacto ambiental.
- RD 1131/1988, por el que se aprueba el reglamento para la ejecución del RD Legislativo 1302/1986.

Actividades clasificadas

- Decreto 2414/1961, por el que se aprueba el Reglamento de Actividades Molestas, Insalubres, Nocivas y Peligrosas (RAMINP).

Emisiones a la atmósfera:

- Ley 38/1972, de protección del ambiente atmosférico.
- Decreto 833/1975, que desarrolla la ley 38/1972.
- Orden de 18 de octubre de 1976, sobre prevención y corrección de la contaminación atmosférica industrial.
RD 1613/1985, por el que se modifica parcialmente el Decreto 833/1975 y establece nuevas normas de calidad de aire en lo referente a contaminación por SO₂ y partículas.
RD 717/1987, por el que modifica el RD 813/1975 y establece nuevas normas de calidad de aire en lo referente a contaminación por NO₂ y plomo.
RD 1321/1992, por el que modifica el RD 1613/1985 y establece nuevas normas de calidad de aire en lo referente a contaminación por SO₂ y partículas.

Residuos

Ruidos

- Ley 7/2002, de 3 de diciembre, de la Generalitat Valenciana, de protección contra la contaminación acústica.
- Decreto 266/2004, de 3 de diciembre, de la Generalitat Valenciana, por el que se establecen normas de prevención y corrección de la contaminación acústica en relación con actividades, instalaciones, edificaciones, obras y servicios.
- Ordenanzas municipales al respecto.

2 DESCRIPCIÓN DE LA ACTUACIÓN Y SUS ACCIONES DERIVADAS

2.1 Localización

La localización del emplazamiento es la siguiente:

GESTREVIN
Polígono Industrial Nuevo Tollo, parcela M-101
46.300 Utiel (Valencia)

La ubicación concreta se puede definir a partir de las coordenadas UTM de la planta:

Provincia 46 – Valencia
Municipio 249 – Utiel
Coordenadas UTM:
X 651.865
Y 4.380.926
2.2 Descripción de la actuación

La actuación prevista se centra en la producción de energía eléctrica, mediante 1 motor de 330 kW eléctricos, consumiendo como combustible el propio biogás obtenido como producto final del proceso de tratamiento de agua que se realiza en la empresa, y recuperando el calor residual contenido en los gases de escape del motor y en el circuito HT de refrigeración, para el calentamiento del digestor donde se tratan los fangos de la depuradora.

2.2.1 Descripción de la digestión anaerobia derivada del tratamiento de agua

Mediante el proceso de la digestión anaerobia de los fangos finales de los procesos de depuración de aguas, se permite una importante degradación de las materias orgánicas contenidas en los fangos, además de la producción de metano principalmente (CH$_4$) y otros compuestos, que se puede recuperar para hacer funcionar el motor de biogás. Para realizar una buena digestión las condiciones óptimas del digestor deberán ser las siguientes:

- pH entre 6,8 y 7,2
- Temperatura: 35°C
- Tiempo de residencia: 3 semanas

Con el fin de disminuir las cantidades de ácido sulfhídrico presentes en el biogás producido, se realizará un tratamiento de este gas previo a su utilización en el motor, para evitar un desgaste prematuro de los componentes de éste.

2.2.2 Necesidades térmicas y producción de biogás

Las necesidades térmicas de atemperamiento del digestor son principalmente en forma de agua caliente en un circuito de proceso que caliente el circuito de fangos.

Las características principales de la generación de biogás son:

- Composición media:
 - 76.5% CH$_4$
 - 23.0% CO$_2$
 - 0.5% H$_2$S

- Volumen de gasómetro = 1.400 m3
- Presión gasómetro = 2 – 3.5 mbar
- Presión aguas abajo soplante = 150 – 200 mbar
- Presión antorcha = 20 mbar

- Velocidad de la soplante y caudales asociados:
 - 50 Hz – 3.078 rpm – 571 m3/h de biogás
 - 40 Hz – 2.460 rpm – 430 m3/h de biogás
Estudio de impacto ambiental COGENERACIÓN A BIOGÁS
GESTREVIN

30 Hz – 1.845 rpm – 289 m³/h de biogás
Normalmente la soplante trabaja a 30 Hz.

- Generación diaria aproximada = 4.560 m³/día, que se corresponde con aproximadamente 16 horas de funcionamiento al día.

Actualmente estas necesidades térmicas se obtienen a partir de una caldera de biomasa existente que genera vapor requerido para varios de los procesos de tratamiento, y a partir del cual se obtiene también agua caliente en un intercambiador vapor-agua, para posteriormente calentar el circuito de fangos del digestor.

2.2.3 Descripción del proceso de cogeneración

La planta de cogeneración estará compuesta por un motor que consume biogás procedente del proceso de tratado de los lodos. El alternador acoplado al motor proporcionará energía eléctrica para las propias instalaciones de GESTREVIN y que en funcionamiento normal se autoconsumirá en su totalidad, aunque la instalación eléctrica estará preparada de manera que se podrían verter los excedentes de generación a la red de distribución eléctrica.

El aprovechamiento energético del biogás como combustible en motogeneradores para la generación de energía térmica y eléctrica aparece como la valorización más rentable de este subproducto de la depuración y tratamiento de aguas, que de otro modo debería ser quemado mayoritariamente en una antorcha al no existir en la instalación otros puntos de consumo para el mismo.

A ello debe añadirse la tecnología desarrollada para el funcionamiento de los motogeneradores de gas empleando como combustible biogás (con unos porcentajes de metano inferiores), así como la rápida evolución del conjunto de los motores de gas (principalmente en control electrónico de la combustión –cilindro a cilindro-, mayores presiones de sobrealimentación en el aire de carga, etc.). Todo ello proporciona como resultado valores muy aceptables de eficiencia térmica y eléctrica, que hacen que estos equipos se adapten perfectamente al tipo de instalación que se proyecta.

Por otro lado, la tecnología de la cogeneración cuando se emplean motores alternativos permite disponer de fuentes energéticas (térmica y eléctrica) como resultado de este proceso de combustión del biogás, lo que supone una optimización de todo el conjunto de procesos de la instalación.

Térmicamente, la recuperación del calor contenido en los circuitos de refrigeración de los motores de combustión, y también la recuperación del calor contenido en los gases de combustión de los equipos, permiten disponer de unas fuentes de calor que es posible emplear en distintos procesos productivos o para calefacción de otros fluidos.

Para el que presente caso, este aprovechamiento térmico se traducirá en:
Recuperación del calor contenido en los circuitos de alta temperatura (circuitos principales). Este calor recuperado lo será por un circuito cerrado de calefacción, el cual lo cederá en el intercambiador existente en el digestor, que permitirá el calentamiento de los fangos en el interior de éste.

Recuperación del calor contenido en los gases de escape, los cuales se dirigirán a un intercambiador de humos-agua que calientan también el circuito de agua de proceso para calentamiento de los fangos.

Eléctricamente, al acoplar un alternador al motogenerador es posible obtener energía eléctrica como resultado del proceso de combustión. Si la cantidad de energía eléctrica generada excede a las demandas totales de la propia instalación asociada (autoconsumos propios de la central de cogeneración y consumos existentes en las instalaciones a las que dicha cogeneración sirve) la planta de cogeneración, configurada de tal modo que el motor esté en paralelo con la red eléctrica, permite que parte de la producción pueda verterte a la red eléctrica, exportándola a la compañía suministradora y obteniéndose un beneficio económico por ella.

2.3 Descripción de los equipos susceptibles de producir impacto

El único elemento potencialmente contaminante de la instalación es el motor de combustión interna que consume biogás.

2.3.1 Motor de combustión de biogás

El equipo principal de la instalación consiste en 1 motogenerador alternativo que utiliza como combustible biogás. A continuación, se indican las características del motor de biogás, según datos facilitados por el fabricante:

- **Marca**: GE JENBACHER
- **Modelo**: JMS 208 GS-C25
- **Potencia nominal en bornas alternador**: 330 kW_{e}
- **Rendimiento eléctrico**: 38,8%
- **Consumo de combustible biogás**: 851 kW PCI
- **Caudal de gas consumido (con PCI=6 kWh/Nm3)**: 142 Nm3/h
- **Potencia térmica aprovechable**
 - Calor contenido en circuito de agua HT: 223 kW
 - Caudal del circuito de agua HT: 17,7 m3/h
 - Temperatura entrada/salida: 70/90°C
 - Calor recuperado en gases escape hasta 180°C: 190 kW
 - Caudal másico húmedo de gases de escape: 1.871 kg/h
 - Temperatura de escape: 502°C

Se trata de un motor de combustión interna alternativo, de cuatro tiempos, con régimen de giro de 1500 rpm y con 8 cilindros en línea. El empleo de motores de combustión interna se justifica, ya que la variación del rendimiento es inferior al 10% cuando el motor no opera por debajo del 50% de su
potencia nominal, quiere esto decir que el consumo es bastante lineal con relación a la potencia generada.

El motor funcionará continuamente interconectado a la red de la compañía eléctrica, aunque la energía generada se autoconsumirá toda en la planta durante un funcionamiento normal de la misma. La instalación permite que, en periodos de fallo de la red, la planta pueda alimentarse parcialmente desde la cogeneración, funcionando en isla.

La tensión entregada será a 400 V, 50 Hz, con un factor de potencia de cos phi = 0,8. El alternador es capaz de soportar durante un minuto una corriente de 1,5 veces la corriente nominal o 1,1 veces la corriente nominal durante dos horas sin que el calentamiento de la maquina supere la temperatura de diseño de los aislantes. Igualmente debe ser capaz de soportar durante 10 segundos una corriente superior a 3 veces la nominal, que es el caso del cortocircuito simétrico trifásico. El regulador de la tensión tiene un margen de regulación del +5 % del voltaje y controlado por un potenciómetro que pueda ser instalado a una distancia de 60 metros del regulador.

Todo el equipo de regulación está montado en el propio alternador que está acoplado al motor, siendo sus características principales:

<table>
<thead>
<tr>
<th>Marca</th>
<th>STAMFORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>HC 534 E</td>
</tr>
<tr>
<td>Potencia tipo</td>
<td>476 kVA</td>
</tr>
<tr>
<td>Potencia mecánica en el eje del motor</td>
<td>342 kW</td>
</tr>
<tr>
<td>Potencia efectiva nominal a cos phi 1</td>
<td>330 kW</td>
</tr>
<tr>
<td>Potencia efectiva nominal a cos phi 0,8</td>
<td>327 kW</td>
</tr>
<tr>
<td>Potencia aparente nominal a cos phi 0,8</td>
<td>408 kVA</td>
</tr>
<tr>
<td>Intensidad nominal a cos phi 0,8</td>
<td>589 A</td>
</tr>
<tr>
<td>Velocidad de rotación</td>
<td>1.500 r.p.m.</td>
</tr>
<tr>
<td>Velocidad embalamiento</td>
<td>1.800 r.p.m.</td>
</tr>
<tr>
<td>Rendimiento mec. a cos phi 0,8</td>
<td>95,5 %</td>
</tr>
<tr>
<td>Rendimiento mec. a cos phi 1</td>
<td>96,5 %</td>
</tr>
<tr>
<td>Tensión</td>
<td>400 V</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>0,8 (i) – 0,95 (cap)</td>
</tr>
<tr>
<td>Momento de inercia</td>
<td>8,70 kgm²</td>
</tr>
<tr>
<td>Peso</td>
<td>1.535 kg</td>
</tr>
</tbody>
</table>

2.4 Sistema de tratamiento de biogás

Previamente a ser introducido en el motogenerador, el biogás debe cumplir unos determinados condicionantes técnicos definidos por el fabricante, en lo referente a contaminantes y humedad relativa, con los condicionantes siguientes:

- La presión de biogás en la tubería de salida a antorcha es de 30 mbar.
- El biogás tendrá las siguientes características:
 - 60% CH4
 - 40% CO2
 - SH2: 0.5 – 1% (se dimensiona para 1%)
 - Humedad relativa: 100% saturado

- No se prevén otros contaminantes en el biogás.

- El sistema de tratamiento se conectará previo a la antorcha, realizándose una derivación hacia la cogeneración con tubería de acero inoxidable AISI304.

- El sistema de tratamiento de biogás incluye las siguientes 2 fases:

 a. Sistema de reducción de H2S mediante tratamiento biológico con bacterias en el interior de un tanque de fibra de vidrio reforzado.

 b. Sistema de reducción de humedad mediante un evaporador o secador frigorífico, ya que, a la salida del sistema de lavado anterior, el biogás está saturado al 100%, dejando a la salida una humedad relativa del 60%.
3 EMISIONES CONTAMINANTES

3.1 Instalación de cogeneración

Por instalación de cogeneración se entiende al conjunto formado el motogenerador, los circuitos de agua y aceite y el sistema de gases de escape para evacuarlos a la atmósfera.

3.1.1 Emisiones sólidas

No se producen en ningún caso.

3.1.2 Emisiones líquidas

El motor de combustión interna contiene dos tipos de fluidos que por su composición pueden ser moderadamente contaminantes: el aceite de lubricación y el agua de refrigeración. Ambos circuitos son cerrados y estancos, y no se producen fugas en condiciones normales de funcionamiento, por lo que no puede producirse contaminación de forma continua.

Rodeando a la bancada que soporta el motor existe un canal de recogida de líquidos que conduce los posibles vertidos a un poceto, cuyo contenido debe ser recogido periódicamente por el gestor autorizado, quién procederá a su recogida al mismo tiempo que a la recogida de aceite usado.

Vertido eventual de agua de refrigeración

El vaciado eventual del agua de refrigeración del motor para los trabajos de mantenimiento preventivo o por reparaciones del circuito, no presenta problemas de contaminación ya que el agua solamente está en contacto con elementos metálicos y los que no lo son, tales como los latiguillos de conexión, no son solubles en agua y por tanto no aportan ningún contaminante a la misma. El vertido de esta agua a la red de alcantarillado no presenta problema alguno.

Para el vaciado controlado del agua de refrigeración se utiliza una bomba portátil que vierte el líquido en un contenedor de plástico, desde donde se volverá a llenar el circuito correspondiente.

Vaciado aceite lubricación

El consumo de aceite según fabricante del motor es de 0,1 kg por cada hora de funcionamiento, es decir 0,3 gramos por cada kWh producido. El vaciado del aceite del motor se efectúa de acuerdo con el programa preventivo de mantenimiento en intervalos aproximados de un mes de funcionamiento. Se dispone de unos bidones de recogida del aceite usado donde se almacena hasta su posterior envío a una planta de tratamiento autorizada. El vaciado del motor y llenado de los bidones se efectúa mediante una bomba de engranajes dispuesta en la bancada de recogida que permite el vaciado sin fugas de aceite.
En caso de vertido accidental, tanto del agua como del aceite, se ha previsto la instalación de una arqueta bajo el motor para la recogida de líquidos y su posterior vertido a una arqueta en el exterior, permitiendo su retirada desde este punto sin que exista comunicación con la red de alcantarillado.

El aceite usado en la instalación será adecuadamente almacenado, etiquetado y entregado a un gesto autorizado.

Volumen de aceite

El volumen de aceite del motor es de unos 126 litros. El número de cambios de aceite se realizará cada 1.500 horas de funcionamiento del motor por lo que el volumen de aceite anualmente consumido será, suponiendo un régimen de trabajo de 16 horas/día:

\[
\text{Nº cambios} = \frac{\text{Nº horas funcionamiento anual}}{\text{Nº horas cambio motor}}
\]

\[
\text{Nº cambios} = \frac{5.840 \text{ horas}}{1.500 \text{ horas}} = 4 \text{ cambios al año}
\]

\[
\text{Vol. Aceite} = \text{Vol. Aceite motor x Nº cambios}
\]

\[
\text{Vol. Aceite} = 126 \text{ litros x 4} = 504 \text{ litros de aceite anuales}
\]

3.1.3 Emisiones atmosféricas

Las instalaciones de cogeneración contribuyen a la reducción global de las emisiones de CO₂ (y resto de otros gases) al recuperar el calor producido en la generación de energía eléctrica o viceversa, lo que supone una gran eficiencia en el uso del combustible.

Las emisiones atmosféricas son de tipo continuo: aunque está previsto, por disponibilidad de biogás producido, horas de paro y mantenimiento, un funcionamiento del motor de biogás durante unas 5.840 h/año.

No se producen en este tipo de máquinas vapores ni polvo.

El combustible biogás, con posterioridad al sistema de tratamiento diseñado, será una mezcla de entorno al 60% de CH₄ y un 40% de CO₂ como componentes principales, que es quemado con un elevado exceso de aire (λ>1,6), controlando mediante microprocesador la mezcla y punto de encendido, lo que maximiza el rendimiento del motor y minimiza la emisión de inquemados y CO. Los productos de la combustión, susceptibles de contaminar serán los óxidos de carbono, azufre y nitrógeno y los hidrocarburos inquemados.

Para el cálculo del caudal de contaminante se utilizará la siguiente expresión

\[
C_c = C_g \cdot \langle \text{mg/Nm}^3 \rangle
\]

 donde,

\[
C_c \quad \text{Caudal contaminante en kg/h}
\]
La equivalencia entre ppm y mg/Nm\(^3\) se establece mediante la siguiente expresión:

\[
(\text{ppm}) = \frac{\langle \text{mg/Nm}^3 \rangle \cdot V_m}{P_m}
\]

donde,

\[
\begin{align*}
(\text{ppm}) & \quad \text{Concentración del contaminante, ppm} \\
\langle \text{mg/Nm}^3 \rangle & \quad \text{Concentración del contaminante mg/Nm}^3 \\
V_m & \quad \text{Volumen de un mol en condiciones normales (22,4 litros)} \\
P_m & \quad \text{Peso molecular}
\end{align*}
\]

En general, las emisiones atmosféricas deberán cumplir con lo establecido en la Ley 34/2007, de calidad del aire y protección de la atmósfera. En concreto para la combustión de biogás, se pueden tener como valores de referencia, de acuerdo con las Mejores Técnicas Disponibles, los siguientes límites:

<table>
<thead>
<tr>
<th>CONTAMINANTES</th>
<th>UNIDADES</th>
<th>NIVELES DE EMISIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partículas sólidas</td>
<td>mg/Nm(^3)</td>
<td>30</td>
</tr>
<tr>
<td>Cloro (expresado como HCl)</td>
<td>mg/Nm(^3)</td>
<td>10</td>
</tr>
<tr>
<td>Flúor en gas y partículas (expresado como HF)</td>
<td>mg/Nm(^3)</td>
<td>10</td>
</tr>
<tr>
<td>Sulfuros (expresado como H(_2)S)</td>
<td>mg/Nm(^3)</td>
<td>10</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>mg/Nm(^3)</td>
<td>4.300</td>
</tr>
<tr>
<td>NO(_x) (expresado como NO(_2))</td>
<td>mg/Nm(^3)</td>
<td>1.000</td>
</tr>
<tr>
<td>CO</td>
<td>mg/Nm(^3)</td>
<td>625</td>
</tr>
<tr>
<td>COT</td>
<td>mg/Nm(^3)</td>
<td>50</td>
</tr>
<tr>
<td>Opacidad</td>
<td>Escala de Bacharach</td>
<td>2</td>
</tr>
</tbody>
</table>

Nota: valores medidos en condiciones normales de presión y temperatura (1 atm y 0°C), al 15% de O\(_2\) y en base seca.

Nota: existe en proyecto una nueva legislación en período de consultas, habiéndose publicado recientemente (en fecha 6 de julio de 2017) el borrador por parte del Ministerio de Agricultura y Pesca, Alimentación y Medioambiente, del Proyecto de RD de protección de la atmósfera y por el que se actualiza el catálogo de actividades potencialmente contaminadoras de la atmósfera. En el citado proyecto de RD se hace también una propuesta de los nuevos límites de emisión para instalaciones de combustión de pequeña y mediana potencia, en instalaciones tanto nuevas como existentes.

A este respecto, mencionar que el motor JENBACHER JMS-208 proyectado tiene la posibilidad de incorporar con relativa facilidad, los sistemas complementarios que sean necesarios.
para que, en caso de requerir el cumplimiento de niveles más restrictivos de emisiones, mediante la incorporación de filtros de carbono activo, catalizadores, etc., poder estar siempre por debajo de los valores límite de emisiones que se deban cumplir para estar dentro de la legalidad.

Monóxido de carbono:

Al existir un exceso de aire superior al 65% apenas pueden aparecer inquemados y presencia de CO. La limitación está fijada por el Decreto de Protección del Ambiente Atmosférico (Decreto 833/1975) que fija un nivel de emisión máximo de 500 p.p.m. en el apartado 27 del anexo IV. Según las especificaciones del fabricante del motor el nivel de emisiones de CO está muy por debajo del límite máximo permitido.

Dióxido de carbono:

Actualmente no existe ninguna limitación en las emisiones de CO₂, aunque permanece el empeño de limitar estas debido a su presunta contribución al efecto invernadero.

Hidrocarburos no quemados:

No están contemplados en la legislación española. Excepto el metano, los hidrocarburos no quemados emitidos por el escape se consideran contaminantes.

Para este tipo de combustible y motor, el valor de hidrocarburos inquemados (NMHC) distintos de metano es inferior a 15 ppm.

Azufre:

El contenido de azufre en el biogás, en forma de H₂S (1% aproximadamente) presente en el mismo hace necesario el acondicionamiento del gas previo a su empleo como combustible, tanto por su efecto contaminante, como por el perjuicio que crea en el propio motor.

Dicho gas es eliminado mediante el tratamiento biológico diseñado, que reduce su contenido por debajo de las 200 ppm, lo que equivale tras su quemado a 400 mg/Nm³ de SO₂, estando el límite permitido en 4.300 mg/Nm³ si se toma la referencia de actividades industriales diversas del Anexo IV del Decreto 833/1.975. Además, la oxidación del H₂S en SO₂ es cuantitativa, por lo que no hay emisión alguna de H₂S después de la combustión del gas.

El caudal de SO₂, con un caudal de gases de escape de 1.871 kg/h x (22,4/28,8) = 1.455 Nm³/h y una concentración de 400 mg/Nm³ es de 0,58 kg/h.

Óxidos de nitrógeno:

La formación de óxidos de nitrógeno es fuertemente dependiente de la temperatura, produciéndose de forma apreciable a temperaturas elevadas. Los motores de gas sobreamplimentados,
funcionan con mezcla pobre, es decir, con gran exceso de aire en relación al valor estequiométrico, por razones de rendimiento, y ello tiene como consecuencia una relativa baja temperatura de combustión.

La emisión de NO\textsubscript{x}, expresada como NO\textsubscript{2}, corregida para un exceso de aire del 65\%, o el 7,8\% de O\textsubscript{2} en el escape es de 500 mg/Nm3 (243 ppm). El motor dispone de un control de temperatura en la cámara de combustión que indirectamente controla la emisión de los óxidos de nitrógeno.

El máximo legal permitido esta definido en el Decreto 833/75 de 6 de febrero que desarrolla la Ley de Protección del ambiente atmosférico que fija un nivel de emisión máximo de 300 ppm en el apartado 27 del anexo IV.

El caudal de NO\textsubscript{x} para el motor de biogás, con un caudal de gases de escape de 1.871 kg/h (1.455 Nm3/h) y una concentración de 500 mg/Nm3 es de 0,73 kg/h.

3.1.4 Contaminación acústica

El funcionamiento del motor en continuo produce niveles de ruido alrededor de los 100 dB. Por ello se considera un foco de contaminación acústica a atenuar. En cualquier caso, como se encuentra dentro de la planta depuradora se acepta un nivel sonoro máximo diario de 70 dBA. El container queda emplazado en zona interior de la fábrica y sus cerramientos tendrán las características necesarias para atenuar el ruido hasta que la repercusión en el exterior sea prácticamente nula.

El motor quedará emplazado en el interior de un container cuyos cerramientos tendrán las características necesarias para atenuar el ruido hasta que la repercusión en el exterior sea prácticamente nula.

3.1.5 Vibraciones

Los núcleos existentes en la central de cogeneración que son generadores de vibraciones y que pueden influir en la emisión de ruidos son los siguientes:

- motogenerador (conjunto motor + alternador).
- bombas de circulación.

Estos equipos contarán con sistemas individuales que eviten la transmisión de las vibraciones a la estructura del edificio, pero también la transmisión por vía aérea (ambas vías de transmisión contribuirían a la generación de ruido por parte de la central).
3.2 OTROS ASPECTOS AMBIENTALES A CONSIDERAR

3.2.1 Relativo al Plan de Acción Territorial de Riesgo de Inundación de la Comunidad Valenciana (PATRICOVA)

La instalación proyectada se encuentra ubicada en un polígono industrial que no está afectado por riesgo conforme al Plan de Acción Territorial de Riesgo de Inundación de la Comunidad Valenciana, según establece el Acuerdo de 28 de enero de 2003, del Consell de la Generalitat, tal y como se muestra en los planos siguientes de peligrosidad y riesgo de inundación.

En cualquier caso, los problemas ocasionados por una hipotética inundación con calado máximo generalizado alcanzado por el agua superior a 80 cm, apenas serían significativos ya que el motor se encuentra ubicado encima de una bancada sobreelevada respecto a la cota 0 de la fábrica y a su vez dentro de un container lo que supone que estará por encima de esos 80 cm.

![Plano de peligrosidad de inundación](image-url)
3.2.2 Relativo a la red de vigilancia ambiental

En referencia a la calidad del aire, tal y como establece el Decreto 119/2003, una función de la Dirección General de Calidad Ambiental es el control de la contaminación atmosférica y para ello se ha desarrollado una Red de Vigilancia y Control de la Contaminación Atmosférica que hace un seguimiento continuo de los niveles de los distintos contaminantes atmosféricos, mediante estaciones automáticas, distribuidas en todo el territorio de la Comunitat Valenciana, que suministran información instantánea de las concentraciones de los principales contaminantes atmosféricos y que se completan con los procedentes de la Red Manual y de las provenientes de la Red de Estaciones Móviles. Todo eso para mantener un conocimiento exacto de los niveles de los principales contaminantes atmosféricos y las variables que influyen en la su propagación en el territorio de la Comunitat Valenciana, de manera que permiten realizar una correcta evaluación de la calidad del aire ambiente de la Comunitat. El objetivo último de este control es prevenir las posibles superaciones de los niveles límites establecidos para los contaminantes atmosféricos, y adoptar las medidas necesarias para evitar que estas superaciones se produzcan, informando a la población de las medidas que han de adoptar en el caso que se superen los niveles de alerta, para proteger la salud de la población, y en
general adoptar todas les medidas que sean necesarias para mantener la calidad del aire ambiente dentro de los objetivos fijados para las normas.

Para la instalación que nos ocupa, la estación más próxima que dará indicaciones de los niveles de calidad del aire, es la siguiente:

<table>
<thead>
<tr>
<th>Provincia</th>
<th>VALÈNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipio</td>
<td>Caudete de las Fuentes</td>
</tr>
<tr>
<td>Zona</td>
<td>Residencial</td>
</tr>
<tr>
<td>Dirección</td>
<td>Parcela situada en la parte trasera del campo de fútbol municipal.</td>
</tr>
<tr>
<td>Código</td>
<td>46095001</td>
</tr>
<tr>
<td>Longitud</td>
<td>1° 16’ 58” Oeste</td>
</tr>
<tr>
<td>Latitud</td>
<td>39º 33’ 36” Norte</td>
</tr>
<tr>
<td>Altitud</td>
<td>794 m</td>
</tr>
</tbody>
</table>

La estación mide los siguientes contaminantes:
- Dióxido de azufre (SO2)
- Dióxido de nitrógeno (NO2)
- Monóxido de carbono (CO)
- Monóxido de nitrógeno (NO)
- Óxidos de nitrógeno totales (NOx)
- Ozono (O3)
- Partículas en suspensión (<1 μm)
- Partículas en suspensión (<2.5 μm)
- Partículas en suspensión (<10 μm)

Otras variables medidas son:
- Dirección del viento
- Humedad relativa
- Precipitación
- Presión barométrica
- Radiación solar
- Temperatura media
- Velocidad del viento
4 DESCRIPCIÓN DE ALTERNATIVAS

A continuación, se describen las alternativas tecnológicas más viables para la generación de energía eléctrica.

4.1 Centrales hidráulicas de agua fluyente

Emplean la energía potencial del agua de un río como fuerza motriz para el movimiento de una turbina conectada a un alternador. Las potencias son pequeñas, del orden de 1 a 5 MW. Alteran el entorno donde se enclavan, principalmente el curso alto de los ríos, ya que aprovechan el caudal del río alterando su curso. Requieren obras de infraestructura, tales como canales de derivación y naves industriales para su alojamiento. Se ponen en marcha rápidamente y normalmente son base de generación de energía eléctrica.

Su rendimiento energético es de alrededor del 80%.

4.2 Centrales térmicas nucleares

Generan energía eléctrica en base a un ciclo de Rankine empleando como combustible uranio. Requieren obras de infraestructura muy importantes y generan residuos radiactivos de gran problemática técnica y social. En la actualidad en España existen varios proyectos parados debido a la moratoria nuclear impuesta por el Gobierno.

Son base en la generación de energía eléctrica de nuestro sistema de producción.

Su rendimiento energético es de aproximadamente el 35%.

4.3 Centrales térmicas convencionales

Son centrales que funcionan según el ciclo de Rankine empleando como combustible carbón o fuel-oil. Sus potencias oscilan entre los 100 MW y los 2,000 MW. Requieren grandes infraestructuras y afectan notablemente el entorno donde se alojan. Están siendo muy cuestionadas ya que contribuyen a la formación de lluvia ácida y al efecto invernadero.

Para su puesta en marcha requieren de un mínimo de 16 horas. Se emplean por este motivo como centrales base o bien para cubrir eventuales paros.

Su rendimiento energético es de alrededor del 38%.
4.4 **Centrales hidráulicas**

Se construyen a pie de presa de grandes embalses. Requieren de obras enormes de infraestructura y afectan el estuario del río donde se ubican, así como sus alrededores. Se emplean para cubrir puntas de demanda ya que se pueden poner en marcha en tan solo 5 minutos.

Su rendimiento energético es del 80%.

4.5 **Centrales de cogeneración**

La base de la cogeneración es el empleo de calores residuales del proceso de generación de energía eléctrica en los procesos industriales. Dependiendo de las máquinas se emplean en los siguientes casos:

- Turbina de gas, con potencias por encima de 1.000 kW y consumos de energía eléctrica muy estables y continuos.

- Turbina de vapor, cuando se requiera vapor en el proceso y consumos de energía eléctrica muy estables y continuos, para potencias a partir de 600 kW.

- Motores a gas, para pequeñas potencias y cuando se requiere una modulación de la demanda energética, para potencias a partir de 200 kW.

- Motores a gasóleo, para idénticas aplicaciones que el anterior en el caso de que no haya gas en la zona.

- Motores a fuel-óleo. Para aplicaciones similares que los motores a gas pero para mayores potencias, por encima de los 2.000 kW y cuando no exista la posibilidad de gas.

El rendimiento energético global de una instalación de cogeneración es superior al 70%. Las inversiones e infraestructuras que se requieren son muy pequeñas comparativamente con las que se necesitan en los otros casos.

4.6 **Parques eólicos**

Se construyen en zonas favorables por las condiciones del terreno y el viento. Producen un impacto visual muy subjetivo. Cada vez mejora el diseño, su integración en el paisaje y la población se acostumbra más a su existencia. Sus potencias pueden oscilar desde los pocos MW, hasta cientos de ellos. Depende del número y el tipo de aerogeneradores que se instalen. La potencia de los aerogeneradores abarca generalmente de 400 a 1.500 kW, llegando hasta los 2 MW para los más modernos equipos.
Utilizan una fuente de energía segura y renovable, además de no producir emisiones a la atmósfera ni generar residuos (salvo los del aceite de los engranajes). Se puede construir en menos de 6 meses y su instalación es compatible con otros muchos usos del suelo.

Por otra parte, su instalación genera modificación en el paisaje. Produce impacto sobre las aves y el sonido que emite hace que la casa más cercana deba estar a unos 100 metros (45 dB(A)).

4.7 Selección de la alternativa

Para la elección de la alternativa se ponderarán los siguientes factores para cada una de las tecnologías especificadas:

- Contaminación atmosférica: valoraremos las emisiones de cada una de las opciones considerando los contaminantes y efectos de éstos sobre el medio. Se considerará negativamente la emisión de óxidos de nitrógeno y azufre.

- Coste ecológico de la implantación: en este factor se considerará la alteración que se produce en el medio por las obras de infraestructura necesarias, tales como desmonte, canalizaciones, líneas de alta tensión, etc.

- Ubicación de la central: ponderaremos si la situación estratégica es perjudicial para el medio ya que requiere afectar parajes no antropizados.

- Vertidos: se valorarán los vertidos de la central, ya bien sean de residuos tóxicos o de agua caliente a través de un condensador, que altera la proporción de oxígeno en el medio.

- Aprovechamiento energético: está claro que la reducción de consumo de combustibles fósiles, de uranio o gas, siempre es un beneficio para el medio ambiente. Se pondrá la interacción energía-medio ambiente.

- Infraestructura transporte energético: aquí valoraremos la necesidad de realizar obras de infraestructura eléctrica, tales como líneas o subestaciones de transformación.

A continuación, se muestra una tabla con datos de emisiones contaminantes, que se tomará como referencia para valorar las emisiones de las alternativas presentadas.
Estudio de impacto ambiental COGENERACIÓN A BIOGÁS
GESTREVIN

COMPARACIÓN DEL IMPACTO AMBIENTAL DE LAS DIFERENTES FORMAS DE PRODUCIR ELECTRICIDAD
(en Toneladas por GWh producido)

<table>
<thead>
<tr>
<th>FUENTE DE ENERGÍA</th>
<th>CO2</th>
<th>NO2</th>
<th>SO2</th>
<th>PARTÍCULAS</th>
<th>CO</th>
<th>HC</th>
<th>RESIDUOS NUCLEARES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón</td>
<td>1.058,2</td>
<td>2.986</td>
<td>2.971</td>
<td>1.626</td>
<td>0,267</td>
<td>0,102</td>
<td>-</td>
<td>1.066,1</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>824</td>
<td>0,251</td>
<td>0,336</td>
<td>1,176</td>
<td>TR</td>
<td>TR</td>
<td>-</td>
<td>825,8</td>
</tr>
<tr>
<td>(ciclo combinado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>8,6</td>
<td>0,034</td>
<td>0,029</td>
<td>0,003</td>
<td>0,018</td>
<td>0,001</td>
<td>3,641</td>
<td>12,3</td>
</tr>
<tr>
<td>Eólica</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>-</td>
<td>TR</td>
</tr>
<tr>
<td>Hidráulica</td>
<td>6,6</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>-</td>
<td>6,6</td>
</tr>
</tbody>
</table>

La valoración se realiza de 1 a 5 con valoración más alta para los efectos más negativos y cero para los que no producen estos efectos.

<table>
<thead>
<tr>
<th>TÉRMICA</th>
<th>NUCLEAR</th>
<th>HIDRAULICA</th>
<th>TURBINA</th>
<th>MOTOR FUEL</th>
<th>MOTOR GASÓLEO</th>
<th>MOTOR GAS</th>
<th>MOTOR BIOGAS</th>
<th>PARQUE EÓLICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>NOx</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Partículas</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CO2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gases radiactivos</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hidrocarburos inquemados</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ruidos</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Coste ecológico instalación</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ubicación central</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Vertido aceite</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Vertido agua caliente</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Aprovechamiento energético</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Infraestructura transporte energético</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>46</td>
<td>28</td>
<td>21</td>
<td>9</td>
<td>17</td>
<td>13</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

No es posible el empleo de energía hidráulica ya que no se dispone de desnivel para ubicar un salto. No se emplea turbina de gas ya que el aprovechamiento energético es inferior al que se obtendría con un motor a gas. No existe recurso eólico, para la implantación de un parque eólico.

La planta de cogeneración tiene una ventaja sobre la producción de energía eléctrica en una planta convencional, donde el rendimiento de la planta es de alrededor del 30%, ya que el resto de energía se emplea en mover equipos de la central y parte se pierde en el condensador de la central hacia focos fríos necesarios para completar el ciclo.
En la planta de cogeneración los efluentes de calor se recuperan hacia procesos de forma que se reduce el consumo de energía global, ya que se mejora el rendimiento energético del proceso de generación de energía eléctrica. Por tanto, se puede concluir que se produce en conjunto una mejora social al reducir globalmente el consumo de energía, y por tanto evitando un aumento de contaminación inherente a los procesos de combustión y producción de energía.

Además, la solución que se ha adoptado para la nueva instalación es tal que permite el aprovechamiento térmico y eléctrico de la combustión del biogás generado (que de cualquier manera debería ser quemado, en las calderas o en la antorcha). Por tanto, se justifica el empleo del motor a biogás, como elemento de generación de energía eléctrica empleado en una instalación de cogeneración, además del aprovechamiento de este combustible, que se obtiene en el proceso de tratamiento de los fangos de la depuradora.
5 INVENTARIO AMBIENTAL

5.1 Descripción del medio receptor

La instalación objeto del presente estudio se encuentra situada en la fábrica de cartón de la empresa en terrenos del término municipal de Utiel (Valencia), en un polígono industrial exterior al núcleo urbano del municipio, próximo a otras zonas rurales, de usos agrícolas.

5.2 Medio ambiente natural

El medio ambiente natural está constituido por tres sistemas interrelacionados: la atmósfera, la hidrosfera y la litosfera. El conjunto de las zonas habitadas de estos tres sistemas se denomina biosfera, a la que pertenece el hombre. En el presente estudio se ha concretado el inventario del medio natural a los siguientes aspectos:

- Topografía del entorno
- Micrometeorología del entorno
- Biosfera

5.2.1 Topografía del entorno

La planta se encuentra ubicada, según la cartografía recogida en el programa informático de la página web del SIG PAC, entre las coordenadas UTM siguientes:

X 651.865
Y 4.380.926

La planta queda ubicada a una altitud de unos 720 m sobre el nivel del mar, enclavada en la comarca de Utiel-Requena. El entorno está rodeado de terrenos de cultivo de vid característicos de la zona, que aprovecha las características climáticas adecuadas para este tipo de cultivo y la elevada fertilidad del terreno por su proximidad al río Cabriel.

5.2.2 Micrometeorología del emplazamiento

Según la clasificación de Köppen, el área estudiada puede englobarse en la región climática Cs (mediterránea o subtropical de clima seco).

El clima de la zona de Utiel es de tipo mediterráneo continental, de veranos cálidos por el día, con temperaturas superiores a 30 grados, incluso en algunas ocasiones de hasta 40, pero con temperaturas nocturnas que nunca superan los 18 grados, y con inviernos rigurosos, en los que en diversos días se baja de -10 grados, nevando parte de ellos, todos estos síntomas térmicos dignos del clima continental. Las precipitaciones son irregulares, asemejándose así al patrón mediterráneo, de entre 420 y 520 litros por metro cuadrado en la mayoría del término, aunque descendiendo a 350 conforme nos vamos acercando a las zonas interiores de la comarca, con periodos secos en verano y con primaveras y otoños bastante lluviosos. La mayoría de la precipitación estival se concentra en
tormentas veraniegas de gran intensidad, que llegan a descargar en forma de granizo, en la que, en diversas ocasiones, puede llegar a llover de forma torrencial.

5.2.3 La biosfera

En su caso, consiste en el inventario de las especies propias del emplazamiento. Se considera encuadrada en la zona floral mediterránea, junto con las características propias de terrenos de interior y en mediana altura, pues la comarca Utiel-Requena forma una meseta o altiplano relativamente llana, entre los 600 y los 900 metros de altitud, con una altura media de 750 m. Esta flora se encuentra alterada por la influencia del hombre en sus cultivos, abundantes en la zona, y de tipo citricola.

En las pocas zonas que no hay cultivo de vid, se pueden encontrar especies como el olivo, el almendro y el algarrobo. Coexisten en la zona pinos mediterráneos tales como el Pinus Pinaster. Hay que mencionar también plantas aromáticas, con flores de gran colorido, así como otros cultivos como los cítricos, la higuera y diversas especies del género Citrus, oriundas de Asia meridional y sudoriental.

La erosión del suelo ha dado lugar a que los bosques se transformen en maleza esclerófica, la “maquia” o en matorrales (la garriga, la frigana), compuestos de numerosos arbustos y matas verdes todo el año (diversas especies de Erica y Citus, Pistacia lentiscus, y los arbustos espinosos Ulex y Calicotome).

5.3 El medio ambiente social

Queda definido por la infraestructura material y los sistemas económicos, sociales e institucionales creados por el hombre para satisfacer sus necesidades básicas e incluye la demografía y los usos del suelo.

5.3.1 Demografía

El cuadro incluido a continuación muestra la población total de los núcleos urbanos situados en el entorno del emplazamiento, en la comarca de Utiel-Requena según el censo de 2008 que recoge el INE. La población total de la zona considerada es de unos 50.000 habitantes, siendo los principales núcleos urbanos que rodean el entorno de la instalación los que se indican.

<table>
<thead>
<tr>
<th>Población</th>
<th>Habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utiel</td>
<td>12.449</td>
</tr>
<tr>
<td>Requena</td>
<td>21.278</td>
</tr>
<tr>
<td>Venta del Moro</td>
<td>1.400</td>
</tr>
<tr>
<td>Camporrobles</td>
<td>1.299</td>
</tr>
<tr>
<td>Sinarcas</td>
<td>1.297</td>
</tr>
<tr>
<td>Caudete de las Fuentes</td>
<td>919</td>
</tr>
<tr>
<td>Fuenterrobles</td>
<td>792</td>
</tr>
<tr>
<td>Villargordo del Cabriel</td>
<td>692</td>
</tr>
<tr>
<td>Chera</td>
<td>619</td>
</tr>
</tbody>
</table>
5.3.2 **Usos del suelo**

Tradicionalmente, el entorno de la instalación ha sido una zona eminentemente agrícola, con variedad de cultivos, pero principalmente la vid, que engloba a la producción vinícola con Denominación de Origen Utiel-Requena y que actualmente todavía es la base principal de la economía de la zona.

También hay establecidas numerosas actividades industriales, y en menor medida actividades turísticas y deportivas van progresivamente ganando en importancia en la zona.

5.3.3 **Patrimonio**

No existen restos arqueológicos en las inmediaciones de la factoría.

5.4 **Interacciones ecológicas**

Dada la pequeña magnitud de la obra y su situación en el interior de la parcela de la planta industrial, no se espera para esta actuación alteraciones ambientales en la zona ni en sus alrededores.
6 IDENTIFICACIÓN Y VALORACIÓN DE IMPACTOS

6.1 Instalación de cogeneración

Se resumen a continuación los principales focos potenciales que pueden afectar al entorno de la central.

6.1.1 Residuos sólidos

La actividad no genera ningún tipo de residuo sólido ni se manejan en el recinto sustancias pulverulentas.

6.1.2 Residuos líquidos

La actividad de la central de cogeneración, y en particular el motogenerador, generan una determinada cantidad de aceite de lubricación gastado (utilizado) que se almacenará en tanque destinados a tal fin y que periódicamente serán retirados por una empresa (gestora) de servicios debidamente autorizada.

Se trata por lo tanto de un impacto de características temporales, periódico, y que no representa alteración para el entorno directo.

La producción anual estimada de este residuo es de unos 500 litros.

6.1.3 Emisiones gaseosas

La actividad genera emisiones gaseosas como consecuencia de los procesos de combustión empleado en el motor. Las características de la mezcla de gases de combustión vienen dadas por la composición química del tipo de combustible y el exceso de aire de combustión con que operan este tipo de motogenerador.

De manera general, el exceso de aire de combustión en un motor Otto de las características de los que se contemplan en el proyecto es muy elevado, del orden de $\lambda = 1.6$, valor que se toma de referencia para los cálculos de combustión. En función de la composición del combustible y el coeficiente de exceso de aire se obtiene la composición de los gases de combustión.

En este caso, se trata de un impacto de tipo continuo cuya incidencia en el entorno inmediato puede ser perniciosa en el caso de que no exista una buena dispersión de los gases y se produzca por lo tanto acumulación de alguno de los componentes emitidos.

En la tabla siguiente se detallan las principales magnitudes de la combustión en el motogenerador empleando como combustible el biogás generado en la empresa:

<table>
<thead>
<tr>
<th>Motor biogás</th>
<th>330 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRE DE COMBUSTIÓN</td>
<td></td>
</tr>
</tbody>
</table>

29
6.1.4 Contaminación acústica

El funcionamiento de los motores alternativos provoca un elevado nivel sonoro que de no ser corregido originaría serias molestias tanto para las personas que trabajan en la actividad como para los vecinos de la misma (impacto de tipo continuo).

El proyecto contempla la confinación del motor en el interior de un container específicamente acondicionado para evitar transmisiones de ruido elevadas al exterior. Las entradas y salidas de ventilación del container están protegidas con silenciadores acústicos de 30 dB(A) de atenuación, la salida de los gases de escape también incorpora un silenciador acústico de igual atenuación y el propio recinto (paredes y techo) garantiza análoga atenuación.

En conjunto la central no sobrepasará, con los dispositivos indicados, 70 dB(A) a un metro de distancia en cualquiera de sus caras.

6.1.5 Vibraciones

Los núcleos existentes en la central generadores de vibraciones y que pueden influir en la emisión de ruidos son los siguientes:

- motogenerador de biogás (conjunto motor + alternador).
- bombas de circulación

Estos equipos deberán contar con sistemas individuales que eviten la transmisión de las vibraciones a la estructura del edificio, pero también la transmisión por vía aérea (ambas vías de transmisión contribuirían a la generación de ruido por parte de la central).
<table>
<thead>
<tr>
<th></th>
<th>Limites legales</th>
<th>Emisión</th>
<th>Positivo</th>
<th>Temporal</th>
<th>Simple</th>
<th>Directo</th>
<th>Reversible</th>
<th>Recuperable</th>
<th>Periódico</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>4.300 mg/Nm³</td>
<td>400</td>
<td>Positivo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NOₓ</td>
<td>1.000 mg/Nm³</td>
<td>500</td>
<td>Positivo</td>
<td>Permanente</td>
<td>Simple</td>
<td>Indirecto</td>
<td>Reversible</td>
<td>Recuperable</td>
<td>Continuo</td>
</tr>
<tr>
<td>Partículas Sólidas</td>
<td>150 mg/Nm³</td>
<td>0</td>
<td>Negativo</td>
<td>Permanente</td>
<td>Simple</td>
<td>Indirecto</td>
<td>Reversible</td>
<td>Recuperable</td>
<td>Continuo</td>
</tr>
<tr>
<td>CO</td>
<td>500 ppm.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CO₂</td>
<td>-</td>
<td>450 Nm³/h</td>
<td>Negativo</td>
<td>Permanente</td>
<td>Acumulativo</td>
<td>Indirecto</td>
<td>Reversible</td>
<td>Recuperable</td>
<td>Continuo</td>
</tr>
<tr>
<td>Hidrocarburos inquinados</td>
<td>-</td>
<td>0</td>
<td>Positivo</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coste ecológico implantación</td>
<td>-</td>
<td>---</td>
<td>Positivo</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ubicación central</td>
<td>-</td>
<td>---</td>
<td>Positivo</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Vertido aceite</td>
<td>-</td>
<td>500 l/año</td>
<td>Negativo</td>
<td>Permanente</td>
<td>Simple</td>
<td>Indirecto</td>
<td>Reversible</td>
<td>Recuperable</td>
<td>Discontinuo</td>
</tr>
<tr>
<td>Vertido agua Caliente</td>
<td>-</td>
<td>---</td>
<td>Positivo</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Aprovechamiento energético</td>
<td>min 55%</td>
<td>70%</td>
<td>Positivo</td>
<td>Permanente</td>
<td>Acumulativo</td>
<td>Directo</td>
<td>---</td>
<td>---</td>
<td>Continuo</td>
</tr>
<tr>
<td>Infraestructura transporte Energético</td>
<td>-</td>
<td>---</td>
<td>Positivo</td>
<td>---</td>
<td>---</td>
<td>Directo</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
7 MEDIDAS PROTECTORAS Y CORRECTORAS

7.1 Instalación de cogeneración

De la identificación y valoración de los posibles impactos de la instalación de cogeneración se desprende que los principales efectos medioambientales se derivan del cambio de aceite, de las emisiones gaseosas originadas en la combustión y por la identificación del conjunto de la instalación como foco de ruido y vibraciones.

A continuación, se describen las medidas correctoras que se prevé adoptar para minimizar los impactos que estos dos focos pueden provocar en el entorno de la central.

7.1.1 Recogida de aceite

Para la recogida habitual se utilizará el uso de bidones para su posterior evacuación a la planta de tratamiento.

Asimismo, se ha previsto una arqueta y foso para su posterior extracción en el supuesto que se produzca un derrame fortuito.

Se contactará con un gestor autorizado la recogida de los aceites lubricantes de la instalación de cogeneración. La producción de estos residuos se puede estimar aproximadamente en media tonelada anual (aproximadamente 500 litros).

7.1.2 Emisiones gaseosas

Para la evacuación de los gases de escape del motor a la atmósfera se dispondrá de una chimenea de diámetro interior 200 mm y de una altura sobre el nivel del suelo de 10 metros.

La altura de la chimenea es tal que, al aplicar cualquiera de los métodos de dispersión habitualmente aceptados, se observa una correcta dispersión de los contaminantes emitidos, de tal modo que no se produzcan acumulaciones de los mismos en ninguna área cercana a la central, pero tampoco en ningún otro punto más alejado.

El diámetro escogido permite que la velocidad de paso de los gases sea inferior a 30 m/s, valor que se considera límite para no ocasionar excesivas pérdidas de carga al fluido.

La chimenea de salida de gases se debe realizar en acero 15 Mo3, cumpliendo con la normativa de emisiones de gases atmosféricos vigentes en la actualidad. Por ello, se dispondrá de los orificios reglamentarios para permitir la toma de muestras de los parámetros contaminantes en la emisión, con accesibilidad a los mismos mediante infraestructura fija.
Cálculo de la chimenea de gases (para cada motor)

Se procede al diseño de las chimeneas de acuerdo con lo dispuesto en la Orden de 18 de octubre de 1976 de Ministerio de Industria. Se dispone de una chimenea a través de la cual se evacuan los gases de escape a la atmósfera. Para el cálculo de la chimenea se emplea el caudal gases de escape de 1.871 kg/h (1.455 Nm³/h).

Tal y como se justificó en el apartado en el que describían las emisiones gaseosas, en el caso del motor de biogás se considerarán para el diseño de la chimenea tanto las emisiones de NOₓ como también las de SO₂.

Los dos parámetros que en la Orden de 18 octubre de 1976 caracterizan la chimenea son la altura mínima y el impulso vertical convectivo mínimo.

Para el cálculo de la altura mínima se aplica la expresión:

\[H = \frac{\sqrt[3]{AQF_n}}{CM} \sqrt{V\Delta T} \]

donde,
- \(H \) altura de chimenea en m.
- \(A \) parámetro para la provincia (Valencia, \(A = 70 \times 5,08 = 355,6 \))
- \(Q \) caudal máximo de sustancias contaminantes en kg/h
- \(F \) coeficiente = 1 por tratarse de contaminantes no sedimentables
- \(C_M \) concentración máxima de contaminantes a nivel del suelo, expresada en media de 24 horas, considerando la zona como medianamente industrializada.

\[C_M < C_{MA} - CF \]

- NOₓ 0,4 mg/Nm³ - 0,2 mg/Nm³ = 0,2 mg/Nm³
- SOₓ 0,120 mg/Nm³ - 0,02 mg/Nm³ = 0,1 mg/Nm³

- \(n \) número de chimeneas situadas a distancia inferior a 2 \(H \) de la referencia incluida la del objeto de cálculo = 1. En este sentido, mencionar que las edificaciones de la propia empresa próximas a la chimenea del motor estarán a una distancia suficientemente lejana para que no afecten en absoluto a la dispersión de los gases producidos en el motor de cogeneración.
- \(V \) caudal de gases emitidos en m³/h
- \(\Delta T \) diferencia de gases entre salida de chimenea y ambiente en ºC, \(\Delta T = 502 - 17 = 485^\circ C \).

Para el cálculo del impulso vertical convectivo mínimo se aplica la expresión:
\[\Delta T_{\text{min}} > 188 \frac{V^2}{H^2} \sqrt{S} \]

donde,
- \(\Delta T_{\text{min}} \): diferencia de temperaturas en °C entre la temperatura de salida de los humos en la boca de la chimenea y la temperatura media de las máximas del mes más cálido, \(\Delta T = 502 - 30 = 472 \) °C
- \(V \): velocidad de salida de los gases en la boca de la chimenea en m/s.
- \(H \): altura en m
- \(S \): sección en m² de la boca interior mínima de la chimenea.

Altura mínima

<table>
<thead>
<tr>
<th>NO(_X)</th>
<th>SO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>355,6</td>
<td>355,6</td>
</tr>
<tr>
<td>0,73</td>
<td>0,58</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>502</td>
<td>502</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>485</td>
<td>485</td>
</tr>
<tr>
<td>4.131</td>
<td>4.131</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3,2</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Impulso vertical convectivo mínimo

T máx verano (°C)	30
ΔT\(_{\text{min}}\) (°C)	472
Diámetro chimenea (m)	0,2
S (m\(^2\))	0,03
V (m/s)	36,5
\(H \) mínima (m)	9,7

Altura real de la chimenea

| 10,0 |

7.1.3 Reducción de ruidos

El motor de combustión y el alternador accionado tienen un nivel de ruido de 100 dB(A). El proyecto contempla la confinación del motor en el interior de una sala específicamente acondicionada para evitar transmisiones de ruido elevadas al exterior. Dichas medidas comprenden:

- Silenciadores a la entrada de aire de ventilación. Atenuación: 30 dB(A).
- Silenciadores a la salida de aire de ventilación. Atenuación: 30 dB(A).
- Instalación de una puerta acústica con una atenuación global de cómo mínimo 30 dB(A) con junta perimetral de estanqueidad y marco inferior desmontable.
- Silenciadores para la salida de los gases de escape del motogenerador, con una atenuación de 40 dB(A).

En el exterior de la sala de motores no se sobrepasará, con los dispositivos indicados, 70 dB(A) a 1 m de distancia en cualquiera de sus caras.

Para la protección del personal de planta, dentro del container, en lugar visible, se instalarán carteles indicadores de la obligatoriedad de utilizar cascos de protección contra el ruido.

Con la adopción de las medidas anteriores se garantiza un nivel sonoro en la vecindad no superior a 45 dB(A), ya que partiendo de un nivel inicial de 70 dB(A) el nivel sonoro residual a 20 m de distancia es de

\[N_s = 70 - 20 \log (20) = 44 \text{ dB(A)} < 45 \text{ dB(A)} \]

cumpliéndose con los límites establecidos en la reglamentación de protección contra la contaminación acústica para una zona de uso dominante residencial.

Con estas medidas protectoras y correctoras aplicadas se cumple con los límites establecidos en la reglamentación de protección contra la contaminación acústica para una zona de uso dominante residencial, y en concreto los niveles de recepción externa exigidos por la Ley 7/2002, de 3 de diciembre, de la Generalitat Valenciana, de protección contra la contaminación acústica. En concreto el nivel sonoro transmitido por la actividad en los receptores más cercanos no superará los límites establecidos en la tabla 1 del anexo II de la citada Ley, es decir:

<table>
<thead>
<tr>
<th>USO DOMINANTE</th>
<th>DIA</th>
<th>NOCHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitario y docente</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>Residencial</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Terciario</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>Industrial</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

7.1.4 Reducción de vibraciones

Los dispositivos y soluciones que se adoptan para reducir o evitar el máximo las posibles vibraciones son las siguientes:

a) Motogenerador

Se dispondrá sobre un asentamiento sobre bancada metálica común para el grupo motor-alternador, montada sobre unos amortiguadores de vibraciones ancladas a la cimentación.
Al mismo tiempo, todas las uniones del motor con conducciones de suministro, refrigeración y escape se hacen a través de flexibles.

b) Bombas de circulación

Las bombas que lo requieran por sus dimensiones y potencias estarán dotadas de los compensadores de dilatación necesarios para su aislamiento de las conducciones asociadas, tanto en la aspiración como en la impulsiión.

8 PROGRAMA DE VIGILANCIA AMBIENTAL.

Se establecerá un programa de control de las distintas emisiones que se pueden producir en la instalación. Básicamente los focos potenciales a considerar son las emisiones de gases de combustión a la atmósfera y las emisiones sonoras originadas en el funcionamiento de los equipos, principalmente el grupo motor.

Se proponen los siguientes elementos para garantizar la vigilancia ambiental:

- Colocación de orificios para toma de muestras de gases de combustión en el motor de biogás. La ubicación se realizará en un punto que cumpla las siguientes condiciones:
 1. Se colocará a una distancia de 8 diámetros de cualquier punto perturbación aguas arriba del punto de medida y a dos diámetros del punto, si está aguas abajo.
 2. Se colocará un casquillo de DN 100 mm. o mayor con tapa.
 3. El número de puntos de toma será de dos para las chimeneas circulares situados según diámetros perpendiculares, sin embargo, para chimeneas de diámetro interior inferior a 70 centímetros como es este caso, será suficiente una única toma de muestras.

Se propone para el control de las emisiones de la instalación el siguiente programa de vigilancia:

- Una medida de los gases de combustión a la puesta en marcha de las instalaciones donde se analice:
 - Óxidos de nitrógeno
 - CO
 - CO₂
 - SO₂
 - Partículas
Una revisión anual de los parámetros anteriores. La propiedad dispondrá de un libro de registro por cada foco emisor de contaminantes de la cogeneración según el modelo que aparece en el anexo IV de la Orden de 18 octubre de 1976 sobre prevención y corrección de la contaminación industrial de la atmósfera, donde se anotarán todas las mediciones periódicas anuales de autocontrol de las emisiones a la atmósfera.

En cuanto a las mediciones acústicas, se realizará un control de aislamiento acústico mediante medida de inmisiones en la vecindad de la instalación durante la puesta en marcha de las mismas. Este control se realizará descontando el ruido de fondo provocado por las instalaciones ya existentes y de los colindantes.

A este respecto se realizará una medición en el estado preoperacional, es decir previo a la puesta en marcha de la instalación y con posterioridad a la puesta en marcha de la instalación se realizará un Estudio acústico cuyo contenido se establece en el artículo 17 del Decreto 266/2004.

Asimismo, se realizará una auditoría acústica general cada 5 años.

Las medidas serán realizadas por Laboratorio autorizado o bien por Entidad Colaboradora de la Administración.

En función de las medidas obtenidas se podrán variar los objetivos del programa de vigilancia ambiental.

9 CONCLUSIÓN

De lo expuesto se puede concluir que:

a) Las emisiones gaseosas entran dentro de la legalidad.

b) Todas las emisiones atmosféricas, residuos generados y niveles de ruidos generados entran dentro de la legalidad.

c) Sobre el medio ambiente atmosférico el impacto es escaso.

d) El ruido producido por el motor es amortiguado por los equipos dispuestos al respecto y por el propio recinto donde van ubicados. En el exterior de la empresa se cumple con los niveles de recepción externos para una zona de uso dominante residencial.

e) La instalación se encuentra dentro de un recinto privado por lo que no afecta al Patrimonio Histórico Español.
f) La instalación no presenta ningún efecto sobre el medio fluvial o acuífero ya que no presenta efluentes líquidos.

g) El impacto sobre el medio ambiente terrestre es favorable ya que se reduce el consumo de combustibles fósiles y nucleares para la producción de energía térmica y eléctrica.

Se establecerá un programa de vigilancia ambiental consistente en realizar una medida de emisiones a la atmósfera cada doce meses y durante el tiempo de funcionamiento de la planta se mantendrá la recogida de residuos líquidos por parte de un gestor autorizado.

En consecuencia, y de acuerdo con la nomenclatura del artículo 10 y el anexo 1 del Reglamento para la ejecución del Real Decreto Legislativo 1302/1986 de 28 de junio, de Evaluación de Impacto Ambiental debe clasificarse el impacto de la instalación objeto de este proyecto como:

- Simple, dado que su modo de acción es individualizado, sin consecuencias en la inducción de nuevos efectos, ni en la de su acumulación o sinergia.
- A corto plazo, puesto que su incidencia se manifiesta dentro del tiempo comprendido en un ciclo anual.
- Reversible, ya que la alteración sufrida puede ser fácilmente asimilada por el entorno.
- Recuperable, ya que la recuperación es inmediata tras el cese de la actividad, aun en ausencia de medidas protectoras o correctoras.

Por tanto, la valoración global del proyecto se considera COMPATIBLE.

El técnico que suscribe, considera que los datos que figuran en el proyecto deben ser suficientes para que la Superioridad pueda formar juicio técnico de la instalación y como consecuencia emite informe favorable de la misma.

Castellón, julio 2017
El Ingeniero Industrial

Diego Llorens Rodríguez
Colegiado nº 2.364
10 PLANOS

- EMPLAZAMIENTO
- UBICACIÓN DE LA PLANTA DE COGENERACIÓN
- DIAGRAMA ENERGÉTICO
- DETALLE MOTOR Y CONTAINER
GESTREVIN
COORDENADAS UTM (huso 30)
X651.848, Y4.380.926

DIEGO
LLORENS
RODRIGUE
Z

Firmado digitalmente por
DIEGO/LLORENS/RODRIGUE
Fecha: 2018.02.07
18:10:23 +01'00'

COGENERACIÓN GESTREVIN
MOTOR A BIÓGAS

EMPLAZAMIENTO